
Pracriutl Inclex for

H icanlo Baeza- ates Gonzalo N aYarro

DPpartment of Computer Science, University of Clule
Blanco Encalada 2120 - Sa.ntiago - Chile

{ rbaeza,gnavarro }.Qldcc.uchile .el

Abstract

\YP pmpose 1 r-xt iudexing techuique for approximate pattern rnatching, which is practica!
:11HI P~-pPciall_v :tÍJJ¡-•_l c>1 luforrnation Retrieval (IR). Unlike other índices ofthis kincl. it is ilb]e
1" 1"1'1rie\·e auy '-Trlllg that approximately watches a given se;uch pattcru. En:ry ~ec¡nence of
:¡ fixed \Pugth 'tJ']oc:uiug iu the text is stored in the index. together 1Yith poiuters to n.ll the
p()siti"us wl¡¡·r~ ir c¡p¡w:ns. ThP search pattern is cut into pieces so thnt at lea.st onP rnw;t
m:l1clJ c·xactl)· .. -\ll tlu· piece~ are searchecl in the index ancl the uniou of candiclate positions
is \erihed. Tu l'"•llVf' spnce reqmrements, pointers to blocks iusteacl of exn.ct positions can be
ll~ed. \YI1iclJ iun-:,~c-s quer)·ing costs. \Ye designan algorithm to optimize the pattem partítion
Í1110 pÍ!'C<'s ;-;o tl¡:H tlJ¡• tot:cd nurnber ofverificatíons is minirnized. This abo allows lo kuow in
:uh:uJce 1he ex¡ .e·• t"'cl co,.;t of the senrch and the expectecl rele\·nnce of the query to the user.
\\'<· sl1m\· ex¡wnJJlclltnlly tlw huilcl time, space requirements ancl quen· tirnes of onr inclex.
fiHdi11g 1 hcll it 1- ;¡]ll :¡ctical alternatiw for IR.

l1·r~u·o¡ds: Ap¡•rr'':l!JJille String :VIatching. Inforrnation Retrie1nl. Text Inclexing.

1 Introduction

Tltc proble.111 ol' a.p¡,ro:::imat e ~tring matching has a munber of applicaticms i11 compntPr scieuce.

sncl1 ;¡o.; text r<>trie1·;¡_ conqmt;ttional biology. signal processing. pattern recognitimL etc. !t is

(kfi1J<'d <ts follm1s: c:iu-'JI ;¡ lollSJ. iPxt of leugtb n. aml a (comp;natii·Pl~· slwrt) pattent of lengtlt

111. n·l ri(•1·e ;¡]] iltc '"C'.lJIC'llts (or '"occnrreuces") of the text \Yhose uld rhstanr:f: to tl1c paltern is

di Jl\o.o-;1 /,. Tl11' u!it rl ,lourr bf'i\le.en t11·o stri11gs is clefinecl il.S tlte milJiJunm 111nnlwr of ch;n2cter

iuse.r1 iolls. 1kl<'lÍo11' i<llli replacPlllPHts ueeclecl to make them equal It i.s COJI!lll011 to report olll~·

1 l](' Pllclpoilth o!' oc< lllJ('JICP~i. \\'e call u= kfrn the ·'error ratio ...

l11 tl1e on-lilw \'PJ>ion of tlw problem. it is possible to preprocess tlte pattcrn lmt 11ot the icxt.

Tlte cla~sical solntiu11 iHYoln's ch·namic programming and is 0(rnn) time [20]. RecPHtly, a !lumher

of algmitltllb imprcJ\Pd tlw cla~sical one. for instance [24, 0. 22, 8, 21. :28. 4]. Some of them are

.. ~nhliueill'·· i11 tlte -PJ¡-e. tltat tltP~- do not inspect all the characters of tlte text. hui of ccmrse the

mt-lillc prohle.m is ~!r 111 if 111 ¡, take11 as constant. In [4, ::l]. it is shown that [S] i:; the fastest

;llgoriiltm fm mode.rarP!Y lm1· error ratios a.nd pattern length. Onr present work C:lll he seen as

illl oit'-lillc' \'<-•rsiml of r]¡;:c¡1 algoritltm.

\\'e <~-n~ pariicn];n]·· ill1 erested in infonnation retrieval (IR). \Vhere tlte tPxt is 1wnnally so 1arge

1 ltat tlte o11-liue ;11'2-'JliTltlliS arr' not practical. Moreover, queries are more frequent tltau cltil.nges

and iherefon' tlte tPxr ca11 he preprocessed, the query patterns are not too large (i.e. less than 23

letters). tl1e alpltahe.t <ize. (IT) i.s not Yery .small (36 at least) and expectecl error ratios are :s; 1/:3
(~i11ce othen\·i~(' tltr' c¡lJerv retnrns too many matches and is useless to the user).

*TJ,¡, work lti1s bec-H ''lpportF;d iH part bv Fonclecyt grants 1950621 and 1960881. 273

·- -- ----------------------------------~

C:L1~si(.;J indice~ f"cr text a.llovv fa.st of exact

are 1111able to retrieve a word which has been mistyped. This
These índices, however,

1s very common in texts obtained
opticn.l character recognition (O

t]¡p dat;tbc\SP (('.g. whe11 indexing the
as:mrance for the content of

the query rnay be
or WP ma,v not remc1ober tlw exact spelllng of a name. The edit distance defined above

res very vvell such errors.

The first inclexing schemes for approximate text retrieval have appea.recl only a few yea.rs a.go.
There are two types of indexing mecha.nísms and . In the first

(JllP. the iudex is of every word whose edit distance to the pattern is at most
k. In the second one, useful also when the text is not na.tura.l the index is of

everv sequence, without notíon of word
Iudices of the iirst kind store the set of all different 'ií.TOrds of the text (the and use an

on-líne a.lgorithm on the thus the set of words to retrieve.
on, the problem cloes not need to in vol ve ma.tching anymore. Sin ce
ís :m blínear in size with These índices

an occurrence tha.t is not a complete word. For
inserted a space in the rniddle of a word in the text, it will

to :search that word with one error and retrieve it a index.
of thee::e índices are [18],

Iu tlte imlice::; of the second kind, the ·vwrds are al so if vmrds do not
exist in the text such as in DNA or databa.ses.

011P dass of índices for this case is based on building the suffix tree of text and traversing it
iusteacl of tite texL to avoid its redundancies [25, 11, '7]. The main problem with this a.pproach
i~ that ~nffix trces pose heavy space requirements: the index, urtle~s compressed, i:o twelve times
tl1 e size of t lw t ext. A pproaclws to com press the suffix tree are still in their beginnings and ha.ve

Hot he('lJ implernen tcd [14]. lf the index do es not fit in main memory (w hich is u s nally t he
case). t!JP con,c;truction process is very costly, even if the suffix tree is converted to a suffix array
[17], to whiclt [11. 7] can be acla.pted.

A spccmd dass n~duces the problern to exact ma.tching of substrings of the pa.ttern, a.nd uses
élll inclcx that searches the substrings with no errors [12, 23, 19]. Later, the occurrences of those
matchii1g suhstrings have to be verified to sea.rch the complete pattern" These indices can be
efficiently bnilt and take less ::;pace than the others. However, they are less tolera.nt to errors.

Iu tllis work we propose a. sequence retrieving index especially a.imed a.t IR scenarios, in the

same lines of reducing the problern to exact ma.tching. We show a.lso a.n algorithm to optimize

the pa.rtiticm of the pattern in arder to minimize the number of text positions to verify. This
also allowc; to predict the co:ot of the search a.nd to give ea.rly feedback to the user a.bout the
approximate size of the resnlt set. In case of too many verifications (which involves proba.bly too
many r.;o¡.;nJts). the mer ma.y preempt the search, given the poor precision to be obtained

2 reVlOliS

The idi'a of rcduction to exact pa.rtitioning has been used rna.ny times for on-line.
8, '2:2. 4]. Tltco 1Jasic idea follows: if a. occurs in the text with k errors, and if we

cut tlw Íll /;; + 1 must he present in the
occurrence considering tha.t error modifies a.t most one

of tl1e , a.nd therefore a.t lea.st one survives unchanged. To find al]

occnrn'lH·es it suffices to scarch all and check their neighborhood,

of t he idea ha.ve. be en studied. It has
then the su

;ne searched. t hen the search
h character.s that are not
are in t he candidate text area,

Recently. f\ particular case of mat
pattent i:c; cut Ílt /, + s at
t hev observe sume positicmal constraints). This in creases the toleran ce to errors in
Howe\·eL íJ the pattem is Jtot long this very short
mnch more n'rificatione>.

Despitc all geueralizations, the original partitioning idea leads to the fastest on-lín1"
for moderate pattern length and error ratios, as shovvn in [4]. This is the case m 1R.

T1tP first iclen to app1:· r.ednction to exact pa.rtitioning to indexing is [12]. where the q-grams
<tpproé!ch is nsecl. The positions of all q-grams are stored. To search a of
text Í;; dividPcl into blocks of size 2(m- 1). The number of all q-grams of thc
i11to Pclclt block is computed. Each text block \Vith at least m,+ 1- (k+ 1)g g-gra.ms m 1:0

verítied v.citl1 clynainic programming.
Independentlv, in [2] an a.lternative to Glimpse is proposed to allow more searches.

Jw;teacl of eYen· worcl as does. index every
the

T 1tte íd<-';a. of r¡-grarns is n::1ed [23] with a different
t]¡p ÍYXT é\S in lS stored l11 the space

e j\'('1! a se are h searched in the indeL
Ji11e \-'PTSWil.

:--;clternes a.re considered

thc q-grams schemes ha'.'2 small
H p11rposes. as ~:hü\\ll in [4, :3] for íts on-l.ine verswn. In particula.r, Jt

the OJ¡-Ji¡¡e el 1 hrn \Ye are a

q

_-\ ~omeí\hat differeuí iden i:.; [19]. It uses an index where every ,.;equence of the
q is stored. \Vith the list of its in the text. Hence. tbtc!

is similar to the one we propase. HoweveL the reductim1 to exact sea.rch ís
completely dift'crent. To search for a shorter than q- k, all the maximal v1hose edit
distauce to tl1c
the lists are merged_ To handle
1nake t hcm of the rec¡uired lntgth.

and each one is searched in the index
, they are split in a.s many as necessarv

Tbe length of the strings stored in the iridex is made small enough to be able to represent them
as compnter integers. This allows to build the index in O(n) time, very quid::l~r in
The strings mlJSt be short also to avoid an explosive numbers of strings generated at sea.rch time.

QnPr_y complexity is .~ublinear for sufficiently low error ratios. This maximum enc)r
ratio i11creases with the alphabet size. For example. the formula shows that it is 0.33 for () = 4
and 0 ..)6 for () = 20. However, the scheme gets worse (because of the number of strings
as a grows, w hich is the typical case in IR.

A 11seful concept to reduce the space requirements of these índices is block The
main idea is to cut the text in a number of blocks. Instead of storing all the exact positicns where

('é!ch worcl or q~gram occurs,

candidato. blocks must be

blocks where it appears are stored. A t ,search the
, vvhich increases search times.

TJ¡ic; indices [18, Eí] 'Nith results. It ís also used
m [16] vvhicl1 is ha.sed on

As opposed io

are re e o rd cd.

search is not implemented
the case when all the

3 S

index for IR purposes. It indexes all q~grams
) . This can be see¡¡ a.n off~line

\lerifications to
texts. Pointers to exa.ct occurrcncer; orto blocks cz.n be uscd

\VP a useful index.
tirne the text is stored in the iudex

(i ll lexicrll order). To resem ble
q~gnn1s The Hmnber of diffsrent

tlwre <J.TP TI r¡~grams. hnt only V
q-grarns is 1/) Vlhich

" For the coTrectness
neccssarv tl1at the]?,st q- l suffixes of the text are entered as q~gra.ms
uf Togetlwr with each q~gram, we store the list of the text
]]! order. 1 shov,rs a small

l 2 ~1 4
'fext 1 t e V

"' t e X t

exte 2 ···

ludex text 14 ...

xtex 3 ···

Figure 1: The indexing scheme for q = 4.

the set of all different

!f block add is nsed, the text is divided in blocks of a fixed length b, and all the q~grams
that start i11 the block are considered to lie inside the block. the list of the blocks
where each q~g;ra.rn appears is stored in this case. This makes the index smaller there is
only one reference for all the occurrences of a q-gram in a single block).

To search a pa.ttern of length m with k errors, '~Ne split the in k+ 1 search each
in tbc incl2x of q~grams of the text, and merge all the occurrences of all the pieces, since

cach orw is <-t candidate position for a match. The neighborhood of ea.ch candida.te position is then
writied witb a sequential algorithm. If blocks are used, ea.ch candidate block must he
tr;.1verscd wítl! an on~line algorithm.
276

q If a t h d 11 q. a.l1 t he q-
gralll;-i 1.Yltlt tlte p-:1ere as <-t,re to be cons1dered c.s occurrences oftl1e are s

i11 tlte iuclex of q-grams). If the 1s . it is trunca.ted to lts íirst r¡ (íi 1~

pos~ible to H'ríf\· later. iu tlte text. whether the q-gram starts in an occuíTence of the piece
befo re wrifYillg t he íY hole are a).

\\"e de:-;nilw llOí\. a splitting optimization technique to be used a.t query time.
\ \"lten d1e pa ttem is sp lit in k + 1 pie ces. \Ve are free to select those pieces as 11·e like This

iclPil is lllPllticmecl i11 [G] for a.n oll-line algorithm as follows: knowing or a.ssuming <1

dis1 rihntÍOlJ t()r tl1e text to sea.rch. the pieces are selected so that the proba.bilities of all are
.~imil<H. Tl1i.~ millimizes tlte total number of í"erifications to perform, on average.

\\"(' C<lll clu 111nclJ better here. They key point is tha.t it is Yery chea.p to compute in advauce
the (J"Oct nnmher of Yeriii.cations to perform for a given piece. vVe .iust loca.te the piece in the
q-gram illrlex with hinary search. In the general case we obtain a. contiguous regían, for
sltortPr tlJC!Il e¡. By storing, for each q-gram. the accu.mulated length of the lists of occurrences.
we ca11 snhtntci the lengths at the endpoints of the region to obta.in immediatel~, the number of
,·erifi.cntiow.; t<J perfm111. Tlte complete process takes O(log\1) = O(logn).

\Y<' desnihe C\ cl~·Hamic programmíng algorithm to compute the partition tbat miuimizes the
total lllll!llwr of verifi.cations to perform. As a side result, we know in aclvance the total cost to
pa\· to rPirieYe the rPsnlts. which as explained is useful as ea.rly feedha.ck to the user.

Ld put[0 .. 111- i]lw the search pattern. Let R[i.j] be the number of verificatiollS to perform
for t]¡e piPn' put[i .. j- J] (computed as explained above), for every O ::S: 1 ::S: j ::S: m. Using R we
hnilcl tííO lllcttricPs. 11arnelv
~< P[1. !,-] = sn111 of the verifica tions of the pieces in the best partition for .. m- 1] with k enors.
® C[/.1,] = í\·ltere mnst the next piece start in order to obtain P[i, k].

!IclJce. \\·e 1teed O(m2) space. Computing Ras described takes O(rn2 logn) and the followíng
algorithm compntes thc optimal partition in O(m2 k) time.

for (i=O;i<u,;l++)

{ 1'[1. O]= R[i. rn]; C[í. O]= m; }

for (r = 1 ;r S !,·;r ++)
for (i=O;i<nl-t;i++)

f'[i. r] = llliH¡E 1+Lm-r(R[i,.J] + P[j. T"- 1]);
('[1. r] = j that minimizes the expression a.bove; }

Tl1e iillal uumber of \·erifications is P[O, k]. The beginnings of the pieces are !.0 =O, L1 = C'[Cu, k].
f. 2 = C[L¡.l,- 1] (¡. = C[!.~;_ 1 .1].

4 Analysis

\\'e clHC~l~·;;:p t lw 1 ime clllcl space requirements of our index.
To rmilcl t]¡e illclex WP sean the text in a single pass, using ha.shiug to store all the q-gpnns

1 liat clppear i11 thc tPxt. This q must be selected as large as possible, but small enough for the
loicd nnmlwr of snch q-grnms to be sma.ll (practical Yalues for na.turallanguage text are q = ;) .. .)) .

. -\lli1011.Q,b we sca11 every q-gram and any good hash function of a q-gram takes O(q) tite
1ot;;¡] expectecl time is kept O(n) instead of O(nq) by using a techuique similar to
[JG] (Í.('. tlw !Jnsh value of the next q-gra.m can be obtained in 0(1) from the cnrrent ene). Thc
occiHH'llCPS are found in ascending order, hence each insertion takes 0(1) time.

:277

Tl:crefore, li index i~ huilt tune a.nd a pass over the texL The wmst
ca11 he tnade O(n) to build a suffix tree in linear time [26],

\IV(• ;¡¡¡a]vzP spciCP IHYW. To the number of different q-grams in random text, consider

i\¡ai t\1 are rr'1 different ''nrus") and n "balls" (q-grams in the text). The
of e¡ r¡-gram ío he selected in a. tria] ís 1/ Cfq. the of a r¡-grarn rwt

l1it in 11 trials is (L - 1/ rr'~)n. Hence, the average number of q-grarm hit in the n tria.ls is \1 =

rT'1 (1- (L- l / rTr¡)n) = 0) (rr 11 (1-)) = 8 (m in(n, rrq)). This shows that q must be kept o(log(T n)
lor tl1c \'OCé\.lmhrv space to be _/Ve sl1ü'l'./ sizes in the experimeHts.

vv(' nmsider t]¡p lists of occurrences nmv. Since íNe index all positions of all q-gramo;, the space
n•qmrements are O(n), lwiug effectively 4n on a 32-bit architecture1 . U block addressing is used
(with bloch or size /¡), tlw same urn a.rgument used above shov;rs that the space requirements are
O(nV/iJ(1-)), which is o(n) if and only if V= o(b).

\!Ve nmv turn our attention to the tinlP to answer a query. The first splitting optirnization
pl1ase is O(n1 2 (k + log n)) as explained. we have all the positions to verify, we check each
ZOIH' nsiug a classical algorithm [24], at a cost of O() each. This cost is exactly the same as in
tlw OJI-Iim' version [8] siJJCP it is related to the number occurrences of the pieces in the text.

VVc dlla.lyze onlv tlw case of random text (natural language is shown in the).
U11der tl1is a .. ~o;nmpticm, we disca.rd the effect of the optimizatíon and assmne that the 1s

split Íll picces olleHgths as similar as possible. In fact, the optimization technique rnake.s more
diffen'JI ce in nat u rallauguage texts, making the in that case more similar in performance
to tlw case of randorn text.

Tl1('refore \Ve sp!it the pattern in pieces of length lm/(k + l)J and fm/(k + l)l. In terms of
proh<lhilit_v of occurrence, thc shorter pieces are a times more probable tha.n the others (where a
is the size of tbe alp]¡aJwt). Tlte total cost of verifications is no more than

(k+l)m2
--,---,-- n

al k~I J
wltid1 is s11hlinear approxi111ately for u< 1/(:Hog(J m).

()¡¡ i\¡e oí lier haucl. ir we use block addressing, vve must find the exact candiclate positions
IH·fore verífying thcm with the above technique. To do this, we use the on-line version of onr
<tlgoritlnn (i.F. [R]l. which in turn finds the candidate areas and ve.rifies using [24] Excluding
tJ¡c rlhm'e considered veritications, the on-line algorithm runs in O(n) time . Therefore, we show
mtder which restrictions a su blinear pa.rt of the text is sequentially tra.versed. This Hew condition
gcws together with o< 1/(:) logcr m) in the case of block addressing.

Tlw probahility of a text position ma.tching one piece is, as explained, (k+ 1)/alm/(k+l)J_
Tlwreforc, t he proba hility of a block (of size b) being sequentia.lly traversed is

1- (1- k+ 1)b
Cflk~1J

aml ,~ince thcre are 11/b block:; a.nd traversing each one costs O(b), we have that the expected
aHJOllllt of vvork tu traverse blocks is n tin1es the a.bove which is

Tl1e above expression is sublinear for u < 1/ log(J(bm).

1 \Vc: ·'tone .in~t cJIIe poÍJ!ler for ea.ch q-gra.m position. This a.llows to index up to 4 Gb of t.ext. Thcrefore we would
ccse IUOIT titcw four to inclcx !onger texts. Ou the other ha.nd, we are not considering hene tl!e possibility of
llSlll.l!, ;1. li.st of positious, which ca.n consíderabiy reduce thc space rec.¡uirements.

278

5 Experünents

V\-p shcnv experimeuta11~· the index building times and sizes for different values of q, with character
aml block addressing. VVe also show the querying effectiveness of the indices, by compa.ring the
perceutage of t he quer~· time using the index against that of using the on-line algorithm. The
experimental ,-;:¡Jues agree well with onr analysis in terms of the error ratios and block sizes up to
where tlw iuclices are nsefnl. All the tests were run on a Snn SparcClassic with 16 Mb of RAM,
nnmiug SuuOS 4.1.:3.

For the te~ts we nse a collection of 8.84 I\Ib of English literary text, filtered to lower-case and
with all sep<~rators conYerted to a single space. vYe test the cases q = 3 .. 5, ·as well as character
addressiug a11cl block addressing with blocks of size 2 Kb to 64 K. Blocks smaller than 2 Kb v;ere
of HO iuterest hecause the index size was the same as with character addressing, and larger than
64 Kh were of no interest becanse qnery times were too close to the on-line algorithm.

Figure :2 shows index bnild time and space overhead for different q values and block sizes. The
size of the nKabular~· file was 61 Kb for q = 3, 384 Kb for q = 4 and 1.55 Mb for q = .S, which
s!tows a s!tarp increase.

:20

q=.S

q=4

q=3

1 :21\: 41\: SE: 16K :l2K 64K

b

4.0

3 . .5

3.0

2 .. 5

2.0

1..5

l. O

o . .s
0.0

1 2K 4K 8K 16K 32K 641\:

Figure :2: 011 tlte left. i11clex constrnction times (minutes 0f user time). On the right, their space
owrheacl (i.P. iHclex space divided by text space).

\YP show 110\\' c¡nery times. vVe tested queries of length m = 8, 16 and 24. The queries are
nllldomly choc:eu from the text at the beginning of non-stopwords (stopwords are words whích
nuT~· 110 meaning and are normally not allowed in queries, such as 11 a 11 , 11 the 11 , etc.). This setup
rnimics comrnon IR scenarios. For m = S ,,-e show tests with k = 1 and 2; for m = 16 >vith ·
/,- = 1 .. 4 aHd for m = 24 with k= 1 .. 6. Ewry data point was obtained by averaging Uníx's nser
timP ovPr lOO random trials.

Figure :) shmYs qu.ery times as a percentage of the on-line algorithm. For lack of space we
do 11ot ÍllcllHle the percentage of traversed text, which in principie is proportional to the data we
sito\\·. Hmw,·er. the overhea.d of manipulating the index is high and we prefer to give the more
realistic figures. The overhead of managing the index makes it better to use the on-line algoríthm
whell tlte filtration efficiency of the index is not good (moreover, the índices with larger b become
better because the oYerhead is less and the verifications are the same). In the character addressing
inclex. tltis 1tappens for a > 1/4. Up to that point. the search times are under 10 seconds. The
block addressing índices, on the other hand, cease to be nseful too soon, namely for a> 1/8.

279

(j ()

40 ~e/ _/ _/

20 1--~-___:,k

u o

LO O

1'\0

(j()
/

40 ~ / /

120

100 1
(\()

1

L20l

LOO l
80-

60-

40

20
F=

120

80

()()

40

2

2

/

k

3 4

k

3 4

120

120

lOO

80

60

1 1

1 2 3 4 5 6

1 2 4

:20 -r~-----~---,1.; 20 ~¡=.--------~--~~~k

40

20

l 2 1

:L cry Linte nsing the divíded

Tlte rmv~ to q = 3, 4 and 5.

'CJ¡c dashecl line tu character

to llpJWT

280

4 1 2

qnery 'tim.e using the on-line

The
, full lines to block

32 a.nd 64 Kb.

')
,; 4 .s 6

From loW'2f

6 Condusions and Future

\Ye]¡aye described a practical indexing scheme especially suited for and
clll\' seq IH'llCP matching él pattern with a given maximum nurnber of errors. It is on s
text r¡-grams in tlte index rogether with their occurrences. Querying is performed by
t !te ill(lex pieces of tite pa trcrn and verifying the candidate positions. A variant pointing to

i11stead of exact po;,;ition::; is described too. \;Ve analyze and experirnentally test our approaclL
The experime11ts shm\' that the scheme is practical ,_,,hen the pointers point to exact occur­

reHces. Tlte \·alne !J ma\' lw between 3 and 5, giving a tradeoff between inclex spa.ce and query
performance. Depemling 011 !J and for a reasonable error level (o :S: 1/4 in English text), querYing
tite i11clex takes 20/i to ()()'\ of the time of the on-liue algoritlnn. The space overheacl depends on
r¡ ancl i::; lwtween two allCl four times the text size.

Patteru pieces longer than q are truncated. This loses part of the information on the pattern.
Tllis c;:¡se could jnstif~' tlte approa.ch of [21] of splitting the pattern in more pieces and forcing
rnore titan Cl!IC piece to match before verifying. Extending the scheme to matching more than one
piece reclncPs t he mnnber of wrifications but leacls toa more complex a.lgorithm, \\'hose costs may
cmtweight tl1c' gnius of les~ verifica.tions. We are currently studying this issue, ao well as irnprowd
pattPrn splitting !teuristics.

Acknowledgen1.ents

\Ye t l1a11k t he uc;eful comments and careful rea.ding of an anonymous referee.

References

[!] ~l. Ararí.io. (~ . .\:a\·nrro. and N. Ziviani. Large text searching allowing errors. In Pmc 4th
.'J.outh ~l1111 riuw lrorl:shop on StTing Processing. WSP'97, 1997. Valparaíso, Chile. To appear.

[2] H. lhwza- 'ú1tes. SpacP-time trade-offs in text retrieYaL In Proc. WSP'.9S, pages 15-21, 199~).

[:)] H. B<teZ<t-Yntes nnd G. Savarro. A fast heuristic for approximate string matching. In Proc.
!l'SP ·.r;r;. pages f/ -fd. Carleton Cniversity Press. 1996.

HJ H. B<IPZ<t- Yates nnd G.)i"ava.rro. A faster algorithm for approximate string matching. In
fJmr. ('PJJ"fJ6. L:'\CS 1075. pages 1-23, 1996.

["í] H. Baezn-Yates ancl G. ;'\ava.rro. Block-addressing índices for a.pproxirna.te text retrieYal. In
Pmc. CII\Jlf".9í. lCJCJI. Las Vegas. Nevada, .:'-Jov 11-15. To appear.

[h] H. Baezn-Yates and G. l\avarro. Multiple approximate string matching. In Proc. VVADS'.97.
Ll\CS 1212. pages 11-l 184. 1997.

[1] R. Baez;:1-Yates. G . .\avarro, E. Sutinen, and .J. Tarhio. Indices for a.pproxima.te information
retricvnl. Tcchnical Heport TR/DCC-97-2, Dept. of Computer Science, Univ. of Chile. 1997.

[8] R. Baeza- Yates ancl C. Perleberg. Fast and practical approxirnate pattern matching. In Proc.
('F.H.fJ.l. pages lx."í- Hl2. 1992. LNCS 644.

[D] \V. (']¡;:tJJg <tllCl .l. Lampe. Theoretical and ernpirical compa.risons of a.pproxímate string
lllcJtclliltg algorithrns. ln Proc. CPM'92. pages 112-181. 1992. LNCS 644. 281

[1 () l ('ríl¡j¡--; i';¡sj cip Le itUt

i iJ 1V1

[1 1] e;. C:mliiC'I.. al
I<'JlOli [¡¡f!JliJld(ik .T.H.

[1 2] P .Juki11c'll <111d L Pkko]l(-'11 Two
,.
wr ap

l11 hor :\/f(',(J . .!JJ i'CJ]IllJH~ 16. pages 240--248.1991.

l 1 ~] " ¡.,;¡¡ kk itlWil e111d E. ~ll1l1JIPIL index for c¡-grau1s. 11
:lCJJ 1 1)'J(¡ LSC ':i 1 ¡:)()

[1 ']

[L:J] 11. !\;¡¡p <lild I\I ;¡hin Efflcicnt randomized
1 h1 ,. lllf u/. L(2)::2-}>J-:2()() March 190

[l C] Tarhio. ts 011 hlock
Press. 19q5

[i
-l ¡-

:\ldtlhn ;tud C. 1 1 \'

('

' l .\1 11///i

Íll ~tatic texts.

j"f/('1)/
~ l ¡ "¡ 1

[1 >i] l. \,] 1 1)!' i ; l 11 d \\'11 <:LIMPé'E: .'i tool to se.a.rdt thron~h e1dnc• filr• .w~l 1-'lllS TeclJ¡¡jc;ll
llc•p()ri L 1 l. of CS. Uuiv. of Oct 1D9~

SPnTclJ Í 11¡.',. .-1/r;ori th 11?1Ui..

[20] !'. ~1r·llen;. Tl1e IIH'OI'\. ;111d compntatim1 of evolutimJaT)' clista11ces: pattern recognilion. I of
. \ lr;oJ llíuus. L ::FíD TI:) L !)?\()

[2 1] l '-il11 ;¡si ;¡ p lll<lil' matching with r¡-l!locks sequeJJces. I11 Prrw. lí'SF .%. pdges
'2'1/ XII. 1 CJ<)(¡

[:.!::'] 1:. '-i11IÍJWll ;111d .J. Tarltio. Ou nsiug r¡-gram locations m approxÍHJé\tc srring rn;-¡tching. ll1

l'mr CSil.%. l<JCJ!l U\(:S 979.

[:2:1] 1:. .'lnl ÍlW!! ;¡ud .l Tarllio. Filtraticm vvJth
('V\i ·r;c. jlilf'}'S)()-(jj. l D%.

L l-kko!ICIL J'inrling approximate

in approxima.te

in strings. J. of A

1: ¡:kf.:oJJ<'ll. /ljiJliOXÍIIlcli<' strmg matching over s11ffix trees. h1 Pror-.
1 ()C)>L

[:.!ri] 1: 1. Lko:IPII. ('o11slrnctillg ,c;nffix trces on-li11e in lineén time. A

Sc•p 1 'JCJ'>

al1mving errors CA CM,

[L~~] .(1. \V-::. ~,~. rn for
1m'sé:io1: ¡¡¡;¡ Lcl1i11g. A 1):50--67, 1996.

ll(J:L'L]l) 2(i0.

ate lirnited PX-

